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Age-related changes in antigen-
specific natural antibodies are
influenced by sex
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and Nichol E. Holodick1,2*

1Center for Immunobiology, Department of Investigative Medicine, Western Michigan University
Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States, 2Flow Cytometry and
Imaging Core, Center for Immunobiology, Department of Investigative Medicine, Western Michigan
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Introduction: Natural antibody (NAb) derived from CD5+ B-1 cells maintains

tissue homeostasis, controls inflammation, aids in establishing long-term

protective responses against pathogens, and provides immediate protection

from infection. CD5+ B-1 cell NAbs recognize evolutionarily fixed epitopes,

such as phosphatidylcholine (PtC), found on bacteria and senescent red blood

cells. Anti-PtC antibodies are essential in protection against bacterial sepsis.

CD5+ B-1 cell-derived NAbs have a unique germline-like structure that lacks

N-additions, a feature critical for providing protection against infection.

Previously, we demonstrated the repertoire and germline status of PtC+CD5

+ B-1 cell IgM obtained from male mice changes with age depending on the

anatomical location of the B-1 cells. More recently, we demonstrated serum

antibody from aged female mice maintains protection against pneumococcal

infection, whereas serum antibody from male mice does not provide

protection.

Results: Here, we show that aged female mice have significantly more splenic

PtC+CD5+ B-1 cells and more PtC specific serum IgM than aged male mice.

Furthermore, we find both age and biological sex related repertoire differences

when comparing B cell receptor (BCR) sequencing results of PtC+CD5+ B-1

cells. While BCR germline status of PtC+CD5+ B-1 cells from aged male and

female mice is similar in the peritoneal cavity, it differs significantly in the

spleen, where aged females retain germline configuration and aged males do

not. Nucleic acid sensing toll-like receptors are critical in the maintenance of

PtC+ B-1 cells; therefore, to begin to understand themechanism of differences

observed between the male and female PtC+CD5+ B-1 cell repertoire, we

analyzed levels of cell-free nucleic acids and found increases in aged females.

Conclusion: Our results suggest the antigenic milieu differs between aged

males and females, leading to differential selection of antigen-specific B-1 cells

over time. Further elucidation of how biological sex differences influence the
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maintenance of B-1 cells within the aging environment will be essential to

understand sex and age-related disparities in the susceptibility to bacterial

infection and will aid in the development of more effective vaccination and/or

therapeutic strategies specific for males and females.
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1 Introduction

Natural antibodies are polyreactive, low affinity

immunoglobulins of varying isotypes found in both humans

and mice (1–3). Specifically, IgM specific natural antibodies

provide several essential functions including protection from

infection (1), regulation of B cell development (4–6), selection

of the B cell repertoire (5–7), clearance of apoptotic debris (1),

protection against atherosclerosis (8, 9), and allergic suppression

(10). In many diseases associated with aging including

atherosclerosis (11–13), cancer (14), stroke (15), Alzheimer’s

disease (16), influenza (17), and pneumococcal infection (18)

natural antibodies have been demonstrated to be protective. In

mice, 80-90% of natural IgM is produced by B-1 cells (2–4).

Phenotypic and functional analyses have identified different

subsets of B cells, which are broadly categorized as B-1 and

conventional B2 cells. While B2 cells are generally understood to

play a major role in adaptive immunity, B-1 cells seem to exist in

the margin between adaptive and innate immunity. Most

circulating natural IgM is derived from B-1 cells (2–4), which

arise early in life and persist into adulthood via self-renewal (19).

B-1 cells were originally identified by expression of CD5 and

were further characterized by surface expression of IgMhigh,

IgDlow, CD19high, B220low, CD23-, and CD43+ (20), which

contrasts with the surface phenotype of follicular B-2 cells:

CD5-, IgMlow, IgDhigh, CD19+, B220+, CD23+, and CD43-.

Later, an additional population of B-1 cells was identified

sharing the characteristics of CD5+ B-1 but lacking CD5

expression (21). Recent literature indicates that CD5+ cells

lose CD5- expression upon multiple rounds of cell division

(22). Given that CD5- B-1 cells appear to derive from CD5+

B-1 cells (22), examination of antigen specific CD5+ B-1 cells is

representative of the available natural antibody repertoire.

Herein, we examine CD5+ antigen specific B-1 cells to

understand how age and biological sex influences antigen

specific natural antibody.

The B-1 cell compartment changes with increasing age (23,

24), and, as recently demonstrated, is also influenced by

biological sex (25). Examination of the B-1 cell repertoire has

shown that unlike conventional B2 cells, the structure of natural
02
IgM is germline-like due to minimal insertion of non-template-

encoded N nucleotides (N-region additions) along with little

evidence of somatic hypermutation (26, 27). This germline-like

nature of B-1 cell derived natural IgM is required for protection

against Streptococcus pneumoniae infection (28), and is lost in

aged males (23, 25). In contrast to aged males, B-1 cell derived

natural IgM obtained from aged females retains germline-like

status as well as the ability to protect against S. pneumoniae

infection (25). In males, age-related changes seen in natural

antibodies are dependent upon antibody specificity and

anatomical location (24), however, it is unknown if such

changes occur similarly in aged females.

Approximately 5-15% of peritoneal CD5+ B-1 cells are

specific for phosphatidylcholine (PtC), an antigen found on

senescent red blood cells as well as bacterial cell membranes

(29, 30). Anti-PtC antibodies have been shown to be essential in

protection from bacterial sepsis (31). Importantly, biological sex

differences are observed in the mortality of patients with sepsis

(32–35). Considering our previous studies and the extensive

literature demonstrating the major role selection plays in

shaping the CD5+ B-1 cell pool, we questioned how PtC

specific (PtC+) CD5+ B-1 cells would be affected during aging

in female mice. To examine this, we performed single-cell BCR

sequencing on PtC+CD5+ B-1 cells from young and aged female

BALB/c-ByJ mice. Here, we find differences in the selection of

PtC+CD5+ B-1 cells in females versus males over time,

demonstrating that aged males utilize different BCR

specificities than aged females. The sex-related differences in

the natural antibody repertoire observed in our studies have

implications for susceptibility to infection and disparities

between men and women in the incidence and/or death rate

of many diseases of the aged (36).
2 Materials and methods

2.1 Mice

Male and female BALB/cByJ mice were obtained from The

Jackson Laboratory at 6–8 weeks of age and aged in our vivarium
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until the age indicated. The mice were housed at 5 mice per cage

with a 12-hour light/12-hour dark cycle and ad libitum access to

water and food. Mice were cared for and handled in accordance

with the Guide for the Care and Use of Laboratory Animals,

National Institutes of Health, and institutional guidelines. All

animal studies were approved by the Western Michigan

University Homer Stryker M.D. School of Medicine

IACUC committee.
2.2 Cell purification and flow cytometry

Peritoneal lavage and spleen removals were performed on all

euthanized mice. Spleens were homogenized using the rough

ends of glass slides or the Miltenyi gentleMACS dissociator and

then passed through a 70-mm cell strainer. All samples were

treated with RBC lysis buffer for 2 minutes (Lonza),

subsequently diluted with HBSS with 2.5% FBS, and then

centrifuged at 1200rpm for 10 minutes. The cells were

resuspended in HBSS with 2.5% FBS, stained with

immunofluorescent antibodies, and then analyzed on a LSR

Fortessa flow cytometer or Influx cell sorter (BD Biosciences)

with gating on live cells by forward side scatter and/or Aqua

Live/Dead stain (Invitrogen). Images were constructed with

FlowJo™ v10.6.2 Software (BD Life Sciences). The following

antibodies were obtained from BD Pharmingen: CD19 (clone

ID3), CD43 (clone S7), B220/CD45 (clone RA3-6B2), CD23

(clone B3B4), CD5 (clone 53-7.3). FITC labeled PtC liposomes

(purchased from Dr. Aaron Kantor), diluted at 1:30,000, were

used to detect PtC+ B cells, as previously described (5, 24). The

composition of the PtC liposomes used is DSPC : DSPG : Chol

(Molar ratio: 45:5:50).
2.3 Single-cell sequencing and analysis

Peritoneal washout cells and splenocytes were obtained from

BALB/c-ByJ mice at the indicated age and stained with

fluorescence-labeled antibodies. PtC+CD5+ B-1 cell

populations were single-cell sorted using an Influx cell sorter

(BD Biosciences) into a 96-well plate containing lysis buffer

(RNaseOut, 5X Buffer, DTT, IgePAL, carrier RNA, Invitrogen).

Post-sort re-analysis of CD5+ B-1 cell populations showed them

to be ≥;98% pure. To obtain cDNA, a 20ml reverse transcription
reaction was run per well using the SuperScript III enzyme and

random hexamers (Invitrogen). Qiagen’s HotStart Taq Plus

master mix kit was used to perform the first round of PCR

(25ml reaction) using 2.5ml of cDNA diluted 1:2 and the

following primers: MsVHE and MsCmE each at 0.6mM, as

previously described (24, 27). Each 25ml reaction was run as

follows: 95°C for 5 minutes; 35 cycles at 94°C for 30 seconds, 50°

CCfor 30 seconds, 72°C for 30 seconds; and then a final

extention at 72°C for 10 minutes. The product from this first
Frontiers in Immunology 03
reaction was then diluted at 1:100 in dH2O and 2ml was used in

the second semi-nested 25ml reaction using the following

primers: MsVHE and MsCmN each at 0.6mM, as previously

described (24, 27). The second reaction was run as follows: 95°

C for 5 minutes; 40 cycles at 94°C for 30 seconds, 53°C for 30

seconds, 72°C for 30 seconds; and then a final extension at 72°C

for 10 minutes. The products were run on the Qiagen Qiaxcel.

PCR products were sequenced (Genewiz) using the MsVHE

primer. Sequences were analyzed using an online sequence

analysis tool, IMGT/HighV-Quest (37).
2.4 DMPC ELISA analysis

Serum was collected from individual female BALB/c-ByJ

naïve mice at the time of euthanasia at the ages indicated. The

serum was analyzed for antibody against DMPC by ELISA.

ELISA strips were obtained from Avanti Polar Lipids pre-

coated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine

(DMPC). Wells were blocked with 200ml of 3% fatty acid free

bovine serum albumin in PBS for one hour at room temperature

with gentle shaking and then washed three times with 1X PBS.

Diluted serum was added at 50ml per well and incubated for one

hour at room temperature with gentle shaking. The wells were

then washed three times with 1X PBS. Bound antibody was

measured using HRP-conjugated goat anti-mouse IgM (Bethyl

Labs) at 1:20,000. NC-17, kindly provided by Dr. Gregg

Silverman, was used as a standard and included on each plate.
2.5 Cell-free nucleic acid extraction
from serum

Serum was collected from individual young (3- to 4-mo) and

old (18- to 24-mo) male and female mice and processed with the

Quick-cfDNA/cfRNA Serum & Plasma kit (Zymo Research)

according to the manufacturer’s directions. Briefly, serums were

centrifuged at 16,000 g for 10 minutes to remove any cell debris

and precipitates before undergoing Proteinase K digestions.

Nucleic acids were extracted from 200 mL of serum. Samples

were run through the Quick-cfDNA/cfRNA columns and

cfDNA/cfRNA was collected through the co-purification

method. Extracted cfDNA/RNA was stored at -80°C prior to

further analysis.
2.6 Cell-free nucleic acid fragment size
and concentration

Extracted cell-free nucleic acids from each individual serum

sample were quantified using the dsDNA high sensitivity assay,

ssDNA assay, and RNA high sensitivity assay for the Qubit 4

(ThermoFisher) as well as on the 2100 Bioananalzyer (Agilent
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Technologies) with HS DNA chips for assessment of sample

purity, concentration, and fragment size distribution according

to the manufacturer’s instructions. The average fragment size

was determined with the Agilent 2100 Bioanalzyer Expert

software and calculated across the first three major peaks 50 –

650 base pairs (bp) corresponding to the length of nucleosomal

footprints derived from apoptotic cells while high molecular

weight cfDNA was calculated between 2000 – 3000 bp

corresponding to cfDNA derived from necrotic cells (38–40).

The final serum cfDNA/RNA concentration were calculated by

adjusting for the initial serum and final elution volumes and

quantified with the Qubit 4.
2.7 Statistics

Statistical analyses were performed using Prism (Version

9.0). All statistical analyses used are indicated in each figure

legend. The outlier test was performed on all data sets using

Prism’s ROUT method of identifying outliers. Outliers were

removed when detected by Prism’s ROUT method using the

coefficient Q set at 1%. Error reported as standard error of

the mean.
3 Results

3.1 Aged female mice display an increase
in splenic PtC specific CD5+ B-1 cells
and serum PtC specific IgM as compared
to aged male mice

Using fluorescently labeled PtC-liposomes (41), we assessed

the female peritoneal (PerC) and splenic CD5+ B-1 cell pools for

PtC specificity (representative plots in Figures 1A, B). While the

frequency of PerC CD5+ B-1 cells that bound PtC-liposomes did

not change significantly in age-grouped female mice (mean of

3.8%±0.8 in aged vs. 6.2%±0.8 in young) the frequency of PerC

PtC+CD5+ B-1 cells is significantly higher in both young and

aged males as compared to young and aged females, respectively

(Figure 1C). The absolute number of PerC PtC+CD5+ B-1 cells

shows no significant difference (Figure 1D). In the spleen, the

frequency of PtC+CD5+ B-1 cells is significantly higher in aged

males as compared to aged females (Figure 1E); however, the

absolute number of splenic PtC+CD5+ B-1 cells is significantly

higher in aged females as compared to aged males (Figure 1F).

The differences in percent but not total number of PtC specific

B-1 cells is due to differences in total CD5+ B-1 cell numbers in

the peritoneal cavity and spleen (Supplemental Figure 1).

To test serum levels of PtC-specific antibody in aged females,

we analyzed serum from young and aged mice by ELISA for IgM

antibody that recognizes PtC (DMPC, 1,2-dimyristoyl-sn-

glycero-3-phosphocholine is the phosphatidylcholine used to
Frontiers in Immunology 04
coat the ELISA plate). Interestingly, we observed significantly

more DMPC specific IgM in serum from aged female mice as

compared to young female mice (p=0.0079) (Figure 1G).

Furthermore, young female mice have significantly less serum

DMPC specific IgM levels than young male mice (0.80 mg/ml

±0.2 vs. 4.58 mg/ml ±0.43, p=0.0007). Aged female mice have

significantly more serum DMPC specific IgM levels than aged

male mice (189 mg/ml ±40.1 vs. 10.2 mg/ml ±1.06, p=0.0007)

(Figure 1G). These results demonstrate in both male and female

mice, serum PtC-specific antibody increases with age; however,

aged female mice have significantly more serum PtC-specificIgM

than aged males.
3.2 Repertoire of PtC specific peritoneal
and splenic CD5+ B-1 cell changes in
aged females

Considering aged females display considerably higher levels

of PtC-specific serum antibody, we hypothesized that the aged

female repertoire of PtC+CD5+ B-1 cells might be distinct from

that of young females and aged males. Examination of the

variable (VH), diversity (DH), and joining (JH), gene segments

of the immunoglobulin heavy chain as well as germline status of

PtC+CD5+ B-1 cells obtained from either the peritoneal cavity

(PerC) or spleen of young and aged female mice revealed

differences in 1) the germline status and 2) the VH, DH, and JH
gene usage between young and aged females. Aged PerC PtC

+CD5+ B-1 cells utilized VH12 (58% vs. 39%) more frequently

than young. In contrast, the young PerC PtC+CD5+ B-1 cells

used VH5 (3% vs. 1%) and VH11 (31% vs. 15%) more frequently

than aged. Aged splenic PtC+CD5+ B-1 cells used VH1 (8% vs.

4%), VH10 (3% vs. 0%), VH12 (58% vs. 40%), and VH14 (6% vs.

1%) more frequently than young whereas, the young splenic PtC

+CD5+ B-1 cells used VH11 more frequently than aged (37% vs.

9%) (Figure 2A).

When female PtC+CD5+ B-1 cell repertoire data is

compared to our previously published male PtC+CD5+ B-1

cell data, numerous significant differences were observed

between male and female VH utilization (Figure 2B, C). Young

female PerC PtC+ CD5+ B-1 cells utilized VH12 and VH5 more

frequently than young males whereas, young males utilized VH2

and VH7 more frequently than young females (Figure 2B). Aged

female PerC PtC+CD5+ B-1 cells utilized VH12 more frequently

than aged males, whereas aged males used VH2, VH3, and VH7

more frequently (Figure 2B). In the spleen, young and aged

female PtC+CD5+ B-1 cells utilized VH12 more frequently than

young and aged males (Figure 2C). However, young male splenic

PtC+CD5+ B-1 cells used VH1, VH5, VH6, and VH10 more

frequently than young females. In the aged spleen, male PtC

+CD5+ B-1 cells utilized VH1, VH2, VH3, VH5, and VH11 more

frequently than aged females. Together these results
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FIGURE 1

Female mice have an increase in PtC-specific splenic CD5+ B-1 cells and serum anti-DMPC antibody. Representative gating strategy for (A)
peritoneal cavity and (B) splenic PtC+CD5+ B-1 cells. The frequency (C, E) and absolute number (D, F) of PtC+CD5+ B-1 cells were assessed in
young (3-month-old) and aged (18-22-month-old) male and female BALB/c-ByJ mice (young male n=12, aged male n=14, young female n=15,
aged female n=14). (C) The percent of live peritoneal lymphocytes staining positive for PtC+CD5+ B-1 cells (B220loCD5+CD19hiCD23-PtC+), (D)
total number of peritoneal PtC+CD5+ B-1 cells, (E) the the percent of live splenocytes staining positive for PtC+CD5+ B-1 cells
(B220loCD5+CD19hiCD23-PtC+), and (F) total number of splenic PtC+CD5+ B-1 cells. (G) Serum levels of DMPC-specific IgM from young (3-
month old) and aged (22-26-month old) mice (young male n=10, aged male n=10, young female n=7, aged female n=9). Grey squares
represent young male mice, grey circles represent aged male mice, open black squares represent young female mice, and open black circles
represent aged female mice. All results are based on 3 independent experiments. Values are displayed as the mean ( ± SEM) of individual mouse
serum samples. Statistics used: Mann-Whitney test. Asterisks for p values: *p<0.05, ***p<0.001.
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demonstrate significant differences in PtC+CD5+ B-1 cell VH

usage associated with biological sex and age.

While heavy chain sequencing of complementary

determining region 3 (CDR-H3) alone is not sufficient to

establish clonal expansion, a higher proportion of replicate

sequences (sequences with the exact same CDR-H3 sequence)

suggests the presence of clonally divided cells. Sequences from

young PerC PtC+CD5+ B-1 cells were replicated at 67% (237/

354), while PerC PtC+CD5+ B-1 cells from aged mice were

replicated at 85% (412/484) (Figure 3A). Similar results were

found in the spleen, 69% (287/417) replicates from young vs.

85% (412/484) from aged (Figure 3A). Of the replicates observed

in aged PerC and splenic PtC+CD5+ B-1 cells, VH12 was the

most abundantly used VH gene segment (Figure 3A).

Furthermore, we observed a decrease in diversity, defined as

the proportion of unique CDR-H3 sequences, within replicate
Frontiers in Immunology 06
sequences from aged female PerC and splenic PtC+CD5+ B-1

cells (Figure 3B). Quantification of the most utilized CDR-H3

sequences found the PtC/PC (phosphorylcholine) cross-reactive

CDR-H3 (MRYGNYWYFDV, VH11) as the most frequently

utilized replicate in both young female and male PerC and

splenic PtC+CD5+ B-1 cells (Figures 3C, D). However, aged

female PerC and splenic PtC+CD5+ B-1 cells utilize VH12 more

frequently in replicates whereas, aged males utilize VH11

(Figures 3C, D). Splenic PtC+CD5+ B-1 cells from aged

female mice are more diverse in their CDR-H3 replicate

sequences (Figure 3) than splenic PtC+CD5+ B-1 cells from

aged males (24); however, PerC PtC+CD5+ B-1 cells from both

aged females and males are similar in replicate diversity.

Examination of DH and JH genes show significant differences

in utilization in the aged versus young female PerC and splenic

PtC+ populations (Figures 4A, B), the details of which are
A

B

C

FIGURE 2

Repertoire analysis of natural IgM from peritoneal and splenic PtC+ CD5+ B-1 cells in adult female young and aged mice. PtC+CD5+ B-1 cells
were single-cell sorted from the peritoneal cavity or spleen of 3- and 23-26-month-old female BALB/c-ByJ mice. The VH region was amplified
and sequenced as detailed in Materials and Methods. (A) The percent of VH gene segment usage (young in grey bars, aged in black bars). (B, C)
For direct comparison of females and males,previously published (24) repertoire analyses of young and aged male PtC+CD5+ B-1 cells is
included. Results are based on 4 independent experiments with sequences combined from each independent experiment (n=11 for 3-month-
old mice, n=15 for 23-26-month-old female mice). Statistics used: 2x2 chi-square test. Asterisks for p values: *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001.
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FIGURE 3

Significant differences in female versus male peritoneal and splenic PtC+CD5+ B-1 cell CDR-H3 use. PtC+CD5+ B-1 cells were single-cell
sorted from the peritoneal cavity or spleen of young and aged female BALB/c-ByJ mice (as presented in Figure 2). (A) The percent of VH gene
segment usage within the replicate sequences. (B) Distribution of replicate CDR-H3 sequences in the young and aged (number in the middle
represents the number of replicates within the population). Each color represents a unique CDR-H3 amino acid sequence. (C, D) For direct
comparison of females and males, previously published (24) CDR-H3 analysis of young and aged malePtC+CD5+ B-1 cells is included. (C)
Comparison of the most frequently utilized CDR-H3 sequences of peritoneal PtC+CD5+ B-1 cells from young and aged male and female mice.
(D) Comparison of the most frequently utilized CDR-H3 sequences of splenic PtC+CD5+ B-1 cells from young and aged male and female mice.
Results are based on 4 independent experiments with sequences combined from each independent experiment (n=11 for 3-month-old mice,
n=15 for 23-26-month-old female mice). Statistics used: 2x2 chi-square tests.
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summarized in Supplemental Figure 2. Of note, aged female

PerC and splenic PtC+CD5+ B-1 cells utilized DFL16.1 (DH1-1)

more frequently than young PtC+CD5+ B-1 (Figure 4A). The

germline sequence of DFL16.1 has been shown to be essential in

protection against pneumococcal infection (42).

The number of BCR sequences lacking N-additions at both

female junctions (germline-like structure) changes with age in

both female PerC PtC+CD5+ B-1 cells (65% in aged vs. 74% in

young, p<0.0001, x2, 2x4) and splenic PtC+CD5+ B-1 cells (58%

in aged vs. 0 69% in young, p=0.0005, x2, 2x4) (Figure 4C).

Interestingly, there is no significant difference in the number of

PerC PtC+CD5+ B-1 cell sequences lacking N-additions

between aged female (65%) and aged male mice (63%);

however, there is a significant difference in the number of

splenic PtC+CD5+ B-1 cell sequences lacking N-additions

between aged female mice (58%) as compared to aged male
Frontiers in Immunology 08
mice (46%) (p<0.0001, x2, 2x4) (Figure 4C). Together, these

results demonstrate significant changes in the repertoire of both

peritoneal and splenic PtC specific natural IgM obtained from

aged female mice as compared to young female mice.

Furthermore, these differences observed in female mice differ

from previously published results examining PtC-specific

natural IgM from aged male mice as compared to young male

mice (24).
3.3 Hydrophobicity of the CDR-H3 loop
changes with age, sex, and VH usage

Of the 6 complementary determining regions (CDRs) in

antibodies, CDR-H3 is the central point for antigen contact and

the most variable in nucleotide/amino acid sequence.
A

B

C

FIGURE 4

Analysis of DH use, JH use, and germline status of young and aged PtC+CD5+ B-1 cells. PtC+CD5+ B-1 cells were single-cell sorted from the
peritoneal cavity or spleen of young and aged female BALB/c-ByJ mice (as presented in Figure 2). (A) The percent of DH gene segment usage.
(B) The percent of JH gene segment usage. (C) The percent of sequences containing zero N-additions (light grey bars) or 1 or more N-additions
(dark grey hashed bars) at both junctions is shown with replicate sequences included in the analysis. For direct comparison of females and males,
previously published (24) N- addition analysis of young and aged male PtC+ CD5+ B-1 cells is included. Results are based on 4 independent
experiments with sequences combined fromeach independent experiment (n=11 for 3-month-old mice, n=15 for 23-26-month-old female mice).
Statistics used: 2x2 and 2x4 chi-square test. Asterisks for p values: **p<0.01, ****p<0.0001.
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D

C

FIGURE 5

CDR-H3 hydrophobicity of PtC+CD5+ B-1 cell IgM changes with age and sex. PtC+CD5+ B-1 cells were single-cell sorted from the peritoneal
cavity or spleen of young and aged female BALB/c-ByJ mice (as presented in Figure 2). “Y” indicates young mice (3-month-old) and “A”
indicates aged (23-26-month-old) mice. (A) The average charge of the CDR-H3 loop region of IgM from the peritoneal or splenic PtC+CD5+
B-1 cells. (B-D) For direct comparison of females and males, previously published (24) hydrophobicity analysis of young and aged male PtC
+CD5+ B-1 cells is included. (B) Female and male comparison of the average charge of the CDR-H3 loop region of IgM from peritoneal or
splenic PtC+CD5+ B-1 cells. (C, D) Correlation of average charge of the CDR-H3 loop region with DH length. Results are based on 4
independent experiments with sequences combined from each independent experiment (n=11 for 3-month-old mice, n=15 for 23-26-month-
old female mice). Statistics used: Mann-Whitney test for (A, B) and Spearman’s rank correlation coefficient (C). Asterisks for p values:
***p<0.001, ****p<0.0001.
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Hydrophobicity is a measurable characteristic of the CDR-H3.

Hydrophobic CDR-H3 loops have been shown to be important

for certain broadly neutralizing antibodies against HIV (43),

whereas antibodies with highly charged CDR-H3 loops are often

autoreactive (44, 45). We calculated the average hydrophobicity

of each CDR-H3 loop using the Kyte-Doolittle scale. Our results

demonstrate the CDR-H3 loop of peritoneal (PerC) PtC+CD5+

B-1 cell IgM increases in charge (decreases in hydrophobicity)

with age (-0.247 ±0.010 in young vs. -0.300 ±0.009 in aged,

p<0.0001) (Figure 5A). Furthermore, females have more highly

charged CDR-H3 loops than males in both the PerC and splenic

compartments (Figure 5B).

The CDR-H3 loop of B-1 cells is characteristically

hydrophobic (46). DH use has been shown to be primarily

responsible, with DH length positively correlating with

increased hydrophobicity of CDR-H3 (46). In concurrence, the

hydrophobicity of PerC and splenic PtC+CD5+ B-1 cell CDR-

H3 loops positively correlate with the length of the respective DH

gene (Figure 5C, D). Young and aged male mice tend to utilize

longer DH gene segments than females, which correlates with the

more hydrophobic CDR-H3 loops seen in males as compared to

the more charged CDR-H3 loops in females (Figures 5C, D).
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Previous studies have shown PtC specific B-1 cells most

frequently utilize VH2, VH11, and VH12 (47, 48). Examination of

CDR-H3 hydrophobicity of PtC specific B-1 cells utilizing VH2,

VH11, or VH12 reveals sex and age-related differences. In female

PerC and splenic PtC+CD5+ B-1 cells utilizing VH11 and VH2,

there is a significant increase in charge with age (Figure 6A).

Young female cells utilizing VH2 were more hydrophobic than

those utilizing VH11 and VH12. The hydrophobicity of cells

using VH12 did not change with age (Figure 6A). There were no

significant differences in the hydrophobicity of PtC specific B-1

cells utilizing VH2, VH11, or VH12 between young female and

male mice (Figure 6B). However, aged females displayed

significantly higher charged CDR-H3 loops than aged males

for VH2, VH11, and VH12 with one exception; PerC PtC+ B-1

cells utilizing VH12 from aged males were significantly increased

in charge as compared to aged females (Figure 6B).

Together, these results demonstrate differences in

hydrophobicity of the CDR-H3 loop in female PtC specific

CD5+ B-1 cell populations with age as well as differences

between aged male and female mice. Overall, female mice

display more highly charged CDR-H3 loops than males.
A

B

FIGURE 6

CDR-H3 hydrophobicity of PtC+CD5+ B-1 cell IgM utilizing VH11, VH12, or VH2. PtC+CD5+ B-1 cells were single-cell sorted from the peritoneal
cavity or spleen of young and aged female BALB/c-ByJ mice (as presented in Figure 2). “Y” indicates young mice (3-month-old) and “A”
indicates aged (23-26-month-old) mice. (A) The average charge of the CDR-H3 loop region of IgM utilizing either VH11, VH12, or VH2 from
peritoneal or splenic PtC+CD5+ B-1 cells. (B) For direct comparisonof females and males, previously published (24) hydrophobicity analysis of
young and aged male PtC+CD5+ B-1 cells is included. Female and male comparison of the average charge of the CDR-H3 loop region of IgM
utilizing either VH11, VH12, or VH2 from peritoneal or splenic PtC+CD5+ B-1 cells. Results are based on 4 independent experiments with
sequences combined from each independent experiment (n=11 for 3-month-old mice, n=15 for 23-26-month-old female mice). Statistics used:
Mann-Whitney test. Asterisks for p values: *p<0.05, ***p<0.001, ****p<0.0001.
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3.4 Amino acid composition of the CDR-
H3 loop changes with age, sex, and
VH usage

We examined the amino acid content of the CDR-H3

regions of PtC+CD5+ B-1 cells and found a predominance of

tyrosine and glycine in cells from both the peritoneal cavity

(PerC) and spleen (Figure 7). We observed many significant

differences in amino acid content of PerC and splenic PtC+CD5

+ B-1 cells between young and aged female mice (Figure 7A), the

details of which are summarized in Supplemental Figure 3.

When comparing these results to our previously published

study of males, aged males displayed significantly fewer

differences in amino acid content with age (24) as compared

to aged females (Figures 7A, B). This distinction is even more

apparent when examining sequences utilizing VH11, VH12, and

VH2 (Figure 7B and (24)). Female sequences utilizing VH12 and

VH2 had many significant changes in amino acid content with

age (summarized in Supplemental Figure 4), which contrasts

with the few changes observed in aged male mice (24). These

results demonstrate differential selection of the PtC+CD5+ B-1

cell repertoire in males versus females over time.

We observed an overall preference for less hydrophobic and

less charged amino acids in the CDR-H3 from both young and

aged female PtC+CD5+ B-1 cells (Figure 7A). When examining

sequences utilizing VH11, asparagine is preferentially used,

whereas in sequences utilizing VH12 and VH2 aspartic acid

usage is preferred (Figure 7B). These findings reflect previous

studies showing DSP gene segments utilizing RF1 contain either

asparagine or aspartic acid (49). Both splenic and PerC aged PtC

+CD5+ B-1 cell sequences utilizing VH12 display an increase in

tyrosine, whereas sequences utilizing VH2 display a decrease in

tyrosine with age. These changes in CDR-H3 amino acid content

could have implications for CD5+ B-1 cell function in the aged.
3.5 Biological sex influences the amount
of circulating cell-free nucleic acid
during aging

Considering our results demonstrating large differences in

the serum and cellular repertoire of PtC-specific CD5+ B-1 cells

in aged females as compared to young females and aged males,

we hypothesized differences in antigenic load may be a driving

factor. Recently, it was shown that Toll-like receptors (TLR) play

a role in shaping the CD5+ B-1 cell repertoire, and TLRs sensing

nucleic acids were specifically tied to anti-PtC responses (50).

Cell-free nucleic acids (cfNCs) found in circulation are mainly

the result of apoptosis (51). The most well characterized cell-free

nucleic acid is DNA (cfDNA) (52), but many other types of

cfNCs have been described including RNAs and mitochondrial

DNA (53). After isolation of cfNC from the serum, we found a
A

B

FIGURE 7

CDR-H3 amino acid distribution within the CDR-H3 changes
with age. The percent of each amino acid used within the CDR-
H3 was determined for each PtC+CD5+ B-1 cell subset as
indicated. (A) Peritoneal and splenic PtC+CD5+ B-1 cells. (B)
Peritoneal and splenic PtC+CD5+ B-1 cells utilizing VH11, VH12,
or VH2. These results are based on sequences obtained from
experiments performed in Figure 2. Results are based on 4
independent experiments with sequences combined from each
independent experiment (n=11 for 3-month-old mice, n=15 for
23-26-month-old female mice). Statistics used: Chi-square test.
Asterisks for p values: *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001.
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FIGURE 8

Aging and biological sex influences the levels and composition of serum cell-free nucleic acids. Serum was obtained from young (3-month-old)
or aged (18-25-month-old) male and female BALB/c-ByJ mice (young male mice n=10, aged male mice n=10, young female mice n=7, aged
female mice n=9). Cell-free (cf) nucleic acids were isolated from 200ul of each individual serum sample. (A) Double-stranded cfDNA, (B) single-
stranded cfDNA, and (C) cfRNA were quantified using the Qubit 4. (D) cfDNA was measured on the Agilent 2100 Bioanalyzer using the HS DNA
assay, and individual electropherograms for each sample were combined for each group (young and old males and females). (E) cfDNA
fragment sizes for each of the three major cfDNA peaks (50–250, 250–450, 450–650) and the HMWcfDNA (~2300bp) from each trace were
mapped with violin plots. Statistics used: Mann-Whitney test and Welch’s t-test (violin plots). Asterisks for p values: *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.
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significant increase in double stranded cfDNA with age

(Figure 8A). Levels of serum cfDNA increased from an

average of 1.272 ng/mL in young males to 4.640 ng/mL in aged

males. The increase in cfDNA in aged female serum was greater

with young females having an average of 1.252 ng/mL and aged

females 22.74 ng/mL of cfDNA (Figure 8A). Levels of single

stranded cfDNA was significantly increased in aged male mice as

compared to young male mice, and a non-statistically significant

trend toward increase was observed in aged female mice

(Figure 8B). When examining cfRNA, aged female mice

displayed significantly increased levels of serum cfRNA as

compared to both young females and aged males (Figure 8C).

We further explored the cell-free nucleic acid composition of

these serum samples using a high sensitivity DNA assay for the

Bioanalzyer (Figures 8D, E). Interestingly, young females had

relatively low amounts of smaller (50-650bp) cfDNA but larger

HMW cfDNA peaks as compared to young males (Figure 8D).

The small cfDNA peaks were strong in aged females, as seen in

both young and old males; however, in agreement with the

quantitation from the Qubit (Figures 8A-C), the total amount of

cfDNA is drastically increased in aged females as compared to

the other groups (Supplemental Figure 4). Importantly, smaller

(50-650bp) fragments have been shown to stem from apoptosis

while larger fragments are thought to originate from necrosis

(38, 54–56). To better explore the possible source of cfDNA from

our samples, the fragment size was analyzed for the following

three groups: 50-250 bp (corresponding to mononucleosome

fragments), 250-450 bp fragments (corresponding to

d inuc l eosome f ragment s ) , 450-650 bp f ragment s

(corresponding to trinucleosome fragments) and high

molecular weight (HMW) cfDNA fragments which were

measured at 2,000-3,000 bp (Figure 8E). Total distribution and

the average size of the fragment shows that the cfDNA products

are different with both sex and age. In the 50-250bp fragment

size, the most significant change is seen between young

males and females: the average bp size of young males

mononucleosome fragment is 161.5±12.27 bp while the young

female is 79.26±6.895 bp (p<0.0001). This difference was not

observed in aged males and females (132.5 bp vs. 133.3 bp,

respectively, p=0.9542). These data suggest the origin of

circulating cfDNA is primarily apoptosis of cells, but there are

differences between females (of both age groups) as compared to

males (Figures 8D, E). In total, the quantity and composition of

cfDNA is significantly different between young and aged males

and females. Together these results demonstrate the amount of

cell-free nucleic acids in the serum of mice changes with age and/

or biological sex.
4 Discussion

Our previous studies have demonstrated that protection

against pneumococcal infection afforded by natural IgM is
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influenced by biological sex and age. In contrast to aged males,

B-1 cell derived natural IgM obtained from aged females retains

the ability to protect against S. pneumoniae infection (25). To

explore how females are able to retain protective natural

antibodies (NAbs) into old age we examined antigen specific

NAbs in young and aged female mice. Specifically, we sought to

determine whether sex and age influence CD5+ B-1 cells

producing natural antibody specific for the phospholipid

phosphatidylcholine (PtC), which is protective against

sepsis (31).

We find an increase in the number of splenic PtC+CD5+ B-1

cells in aged females as compared to aged males, in correlation

with 18 times more serum anti-PtC (DMPC) specific IgM in

aged female vs. aged male mice. BCR repertoire analysis reflects

this change as well. We found splenic PtC+CD5+ B-1 cell IgM

maintains germline-like status in aged females more than aged

males, suggesting that retention of protection in aged females is

in part due to sex-related amino acid structural differences in the

B cell receptor and corresponding antibody. Furthermore, we

observed differences in the amino acid use within the antigen

binding region of the antibody (CDR-H3 region) based on both

sex and age. Changes in amino acid use within the CDR-H3 are

indicative of selection over time. Increase in arginine use is

associated with an increase in autoreactive antibodies (44, 57,

58). Herein, we demonstrate female peritoneal PtC+CD5+ B-1

cells have an increase in arginine use with age, suggesting this

population could contribute to a corresponding increase in

autoantibodies during aging. Together, our results demonstrate

significant differences in the actual (serum PtC specific antibody)

and available (cellular PtC specific BCRs) PtC repertoire in aged

males and females.

It has been previously shown that changes in B cell repertoire

such as DH usage, JH usage, N-region additions (germline

status), and/or amino acid content within the CDR-H3 greatly

influences the hydrophobicity of the CDR-H3 (45).

Hydrophobicity is a characteristic of the CDR-H3, which plays

a role in the interaction of the antibody and antigen.

Hydrophobic CDR-H3 loops have been shown to be

important for certain broadly neutralizing antibodies against

HIV (43). The CDR-H3 loops of peritoneal cavity B-1 cell

antibodies are characteristically hydrophobic (44). We found

that as males and females age, the CDR-H3 regions change in

hydrophobicity based on their location: splenic PtC+CD5+ B-1

cells increase remain hydrophobic while those in the peritoneal

cavity increase in charge. While the trends in hydrophobicity

with age are similar for aged males and females, we find female

PtC+CD5+ B-1 cell IgM is more charged than male PtC+CD5+

B-1 cell IgM in both the spleen and peritoneal cavity.

Importantly, the CDR-H3 of autoreactive antibodies is more

charged than the CDR-H3 of non-autoreactive antibodies (44,

45). The results presented here are intriguing and consistent

considering the higher prevalence of autoimmunity seen in

females (59).
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When comparing the repertoire of healthy aged mice to

those with disease, there are differences in the utilization of

specific CDR-H3 sequences (summarized in Supplemental

Figure 6). Herein, we find peritoneal B-1 cells from aged

females utilize AGDSYGYWYFDV (VH12/DH1-1/JH1) most

frequently. In female B6.Sle1.Sle2.Sle3 lupus-prone mice,

peritoneal B-1 cells utilize AGDYDGYWYFDV (VH12/DH2/

JH1) and MRYGNYWYFDV (VH11/DH2/JH1) most frequently

(60), which are distinct from the CDR-H3 utilization we observe

in the healthy aged female mice herein. In CD5+ B-1 cells

obtained from aged male ApoE knockout mice, the most

frequently utilized CDR-H3 is AGDYDGYWYFDV (VH12/

DH2/JH1) (61), which is the same frequently utilized CDR-H3

seen in the lupus-prone mice. Interestingly, the frequently

utilized CDR-H3 sequences observed in the aged utilize VH12,

which has been previously shown to expand with age in an

antigen-dependent manner (47). VH12 is known to recognize

the phospholipid PtC (48). It is possible PtC could play a role in

selection of the B cell repertoire over time. Interestingly,

phospholipids have been shown to have direct effects on B cell

function (62–64). Alterations in the regulation of PtC have been

shown to be influenced by both age (65, 66) and sex (67, 68). Our

data illustrating sex and age-related differences in VH12

utilization warrant further investigation regarding differences

within the aging environment that influence the selection of B-1

cells and the natural antibodies they produce over time.

Overall, our BCR repertoire results suggest the antigenic

environment of aged females may differ from that of aged male,

and our analysis of cell-free DNA (cfDNA) supports that

conclusion. The maintenance of CD5+ B-1 cells recognizing

the phospholipid PtC is dependent on nucleic acid-sensing Toll-

like receptors (TLR) (50). Aging is associated with increased cell

senescence (69), decreased clearance of apoptotic cells (70), and

higher levels of circulating cell-free nucleic acids (such as DNA,

RNA, mtDNA, self and non-self-nucleic acids) (71, 72), which

could be ligands for such nucleic acid sensing TLRs in the aged.

Here, we report that cell-free nucleic acid levels differ in males

and females during aging. In healthy individuals, cell-free

nucleic acids are mainly derived from hematopoietic cells (39,

51), whereas, in disease states, an accumulation of cell-free

nucleic acids results from the diseased tissue (40). cfDNA

circulating in plasma has been an intensively investigated

biomarker for the diagnosis of cancer, with specific cfDNA

fragment sizes and sequences associated with specific forms of

cancer (73–76). Here, we found that the size of the cfDNA

fragment is associated with sex and age. We demonstrated a

drastically different mononucleosome fragment size of cfDNA

obtained from the serum of young male mice (162 bp) as

compared to young female mice (79 bp), which changes with

age to the same average length in both aged males and females

(133 bp); however, aged females have much more cfDNA as

compared to the other age and sex groups. Importantly,
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accumulation of cell-free nucleic acids might be one type of

antigenic load that could play a role in the selection of PtC+ B-1

cells over time through nucleic acid sensing TLRs.

Our study highlights the need to further our understanding

of how both the male and female aging environments impact the

function and repertoire of B cells over time. As shown here, both

age and biological sex influence PtC-specific antibodies, which

provide protection against sepsis (31). Importantly, sex

differences have been shown in patients with sepsis over the

age of 50, where women have lower mortality than men (32). As

such, it will be essential to fully grasp the influence of sex in the

context of age to design effective vaccines and treat diseases

prevalent in the aging population.
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